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Abstract. The excess specific heat of the structural phase transition of SrTiO3 has been
measured on single crystals under uniaxial stress along the crystallographic [110] direction
and for extremely slow cooling rates. The corresponding excess entropy scales as the square
of the thermodynamic order parameter. The order parameter exponent isβ = 0.35± 0.02 for
stress-free samples and increases systematically with increasing stress. At a stress of 5 bar the
exponent isβ = 0.5 and the phase transition follows mean-field behaviour.

1. Introduction

Strontium titanite, SrTiO3, is a prototype material as regards undergoing a structural phase
transition with a relatively simple geometrical transformation pattern. The phase transition
is essentially related to the tilt of TiO6 octahedra in a cube cage spanned by Sr and O.
Octahedra tilt transitions are most common in perovskite-type structures and systematic
work on their analysis dates back several decades [1].

Despite the apparent simplicity of the transition pattern, a straightforward analysis of the
transition in terms of the simplest soft-mode picture is elusive. The main difficulty relates to
the coupling between the soft mode and other dynamical excitations, both fluctuations and
phonon excitations. In geometrical terms, such couplings are partly indicated by the fact that
the octahedra do not rotate as a strictly rigid body, but change their shape during rotation [2].
A simple correlation between the rotation angleϕ and the spontaneous strainesp, beyond the
lowest-order approximationesp ∝ ϕ2, has not been established. Furthermore, there are two
sets of soft optic phonons which may potentially influence the transition behaviour. Firstly,
the R phonons become soft near the transition point and act as the symmetry-breaking soft
modes. Secondly, the M-point phonons also soften but do not drive the transition [3]. It is
a general observation in ferroelastic and co-elastic phase transitions that such systems with
a multitude of soft-phonon excitations will always show coupling phenomena(∝ Q2

1Q
2
2)

which often modify the details of the transition behaviour [4]. They usually also lead to
mode-crossing phenomena forT < Tc [4] which could well play an important part in the
35 K anomaly in SrTiO3 [5, 6, 7].

Even in the case of the simplest picture of a phase transition driven by R modes alone,
the transition mechanism is complicated by the fact that the transition point is bicritical. As
a consequence, uniaxial strain along the crystallographic [1 1 1] axis splits the transition
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into a second-order transition at slightly higher temperature and a first-order transition at
lower temperatures than in the stress-free case [8]. This bicritical behaviour also impinges
on the critical behaviour of the phase transition in the following way. If the rotation
axis of ϕ, and hence the related component of the order parameterQ = (Qx, Qy, Qz),
are fixed in space, we would expect a simple improper ferroelastic phase transition to
occur. Such phase transitions usually follow mean-field behaviour and we expect an
order parameter exponent ofβ = 0.5 which, indeed, was found for temperatures below
T/Tc = 0.9 by Müller and Berlinger [1]. At temperatures closer to the transition point,
reorientations of rotation axes between crystallographically equivalent axes in the cubic
structure correspond to the movement of domain walls. They are unlikely to occur at
sufficiently low temperatures where mean-field (MF) behaviour was found. Deviations
from the MF behaviour at temperatures very close toTc were investigated using various
experimental methods, although there is not full agreement between the numerical values
of β derived from the experimental observations. The most relevant results forβ range
from 0.33 to 0.42 [1, 8, 9, 10]. Some of the differences were discussed previously as being
due to variations in the defect densities in the SrTiO3 samples. Although such variations
will certainly exist, more systematic errors in the analysis of data, e.g. ignoring volume
expansion in lattice parameters, may generate even greater errors [9]. However, great as
such errors may be, the actual values ofβ are not too far from the theoretical value of
0.38 for a isotropic Heisenberg model [11] which relates to the reorientations of the tilt
axis at temperatures close toTc. Note that the deviation from the MF behaviour is in our
discussionnot the result of any type of expanded Ginzburg interval, but stems from the
crossover from a transition mechanism with one fixed tilt axis to one in which the tilt axes
can flip between the equivalent crystallographic orientations (see, e.g., [12]).

If this physical picture makes sense, we may predict the following scenario: let us
apply a weak external force which prevents the tilt axis from undergoing flips into other
orientations. The order parameter has then only one active component, sayQz, whereas
Qx = Qy = 0. We may then expectQz to show MF behaviour forT → T −

c without any
crossover. Deviations fromβ = 0.5, if there are any, could then be attributed to a ‘true’
Ginzburg interval at temperatures sufficiently close toTc.

In this paper we argue that this prediction is, indeed, borne out in the experimental
observations. The method that we used in our experimental approach was to stress a high-
quality single crystal of SrTiO3 weakly along the [1 1 0] direction. We then measured the
excess specific heat of the phase transition over an extended temperature interval. Integrating
the specific heat, we confirm for1S ∝ Q2 an exponentβ ≈ 0.35± 0.02 for the stress-free
crystal. We also find that any stressed crystal follows MF behaviour(β = 0.5) with little
indication of fluctuation corrections at temperatures close toTc.

2. The experimental approach

Since its adaptation by Baloga and Garland [13], modulation (a.c.) calorimetry has been
used for measurements under hydrostatic pressure. In our case, hydrostatic pressure does
not prevent flips of tilt axes and we need to apply uniaxial stress.

Such experiments are rather difficult to conduct because the device for the application
of stress disturbs the heat conduction in the sample, producing uncontrolled heat losses.
Although the excess specific heat without stress has been measured by several authors [14,
15, 16, 17], there was only one study in which stress was applied to the sample [18]. No
quantitative evaluation of the stress was possible from those experimental results.

In an alternative experimental approach, conduction calorimetry [19] was used. Here
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the sample is placed [20, 21] between two identical fluxmeters formed by a high number
of thermocouples. The details of the experimental arrangements were described previously
[22, 23, 24]; here we repeat the salient points. A conduction calorimeter, where the sample
is pressed between two identical fluxmeters, was constructed [24] and optimized to provide
linear heat conduction and to be rigid enough to act, at the same time, as a piston which
applies uniaxial stress on the sample [25]. The stress on the sample can be controlled
quantitatively and absolute values of the specific heat can be measured.

Figure 1. A diagram of the sensor:81 and82, heat fluxmeters;R1 andR2, heaters; S, sample;
B, bellows; H, heat sink; C, capillary.

To avoid heat losses during the measurement of the specific heat under controlled
uniaxial stress it is necessary that the measuring sensors be used directly to apply the stress
on the sample. In our case, the sensor (figure 1) was formed of two identical fluxmeters (81

and 82), two platinum resistances (R1 and R2), a calorimeter block (H) and a device (B)
to apply an uniaxial stress to the sample (S). Each fluxmeter was made from 50 chromel–
constantan thermocouples connected in series with the wires (18 mm long and 0.5 mm2 in
cross section) placed in parallel lines. On each side, every junction was glued to a thin
silver plate 12 mm in diameter. The external plate was in good thermal contact with the
calorimeter block and the internal plate was in thermal contact with one of the resistances
R1 or R2. The sample was pressed between the two fluxmeters (figure 1). One of them (82)
was fixed to the calorimeter block (H) while the other one (81) was pressed by bellows (B)
connected through a capillary (C) to an outer pressure bottle of N2. Extreme precautions
were taken to achieve symmetry in the device with respect to planex = 0. Thermal
contact between the sample, resistance and fluxmeters was assured by means of a thermal
conduction paste (beryllium oxide and silicone).

The entire assembly (figure 1) was placed in a cylindrical hole made in a cylindrical piece
of bronze (10 kg) which served as the heat sink (the calorimeter block) [25]. The fluxmeters
were aligned with respect to each other and, together with the bellows, were put in thermal
contact with the block using graphite powder. The block and the two surrounding radiation
shields were placed into a hermetic outer case under vacuum (10−7 Torr). The connection
wires and the capillary were in good thermal contact with the outer case, the radiation shields
and the block, thus producing a very good thermal stability in the sensor. The assembly,
surrounded by serpentine, was placed in a Dewar jar filled with alcohol. The temperature
of the alcohol bath was controlled by circulation of liquid N2 through the serpentine. A Pt-
100 thermometer and a Eurotherm 818 controller were used. The temperature measurement
range was between liquid nitrogen and room temperature. The block temperature was
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measured with a commercial platinum thermometer (Leads & Northrup (model: 8164 B)
and a Thinsley resistance bridge (model: Ambassador). An HPE-1328A intensity source
and an HPE-1326 multimeter were used to produce and to measure the power dissipated in
the heatersR1 and R2 respectively. The e.m.f. produced by the fluxmeters was measured
by a Keithley 181 nanovoltmeter with a frequency of four measurements per second. All
the devices were controlled by an HP-75000 data acquisition system and an HP-Vectra 386
computer.

To measure the specific heat, we started from the steady state obtained when the same
powerW was dissipated by both resistancesR1 andR2 (figure 1). Due to the high vacuum in
the calorimeter and the small temperature difference between the sample and the calorimeter
block (lower than 0.1 K) we assumed that there was no lateral heat loss, and that the
temperature of the sample was uniform. At the timet0 the power was switched off and
the thermal equilibrium with the block was obtained at timet1. The e.f.m. given by the
fluxmetersV (t) was measured as a function of time betweent0 and t1. The integration of
this e.m.f. betweent0 andt1 allows us to obtain the thermal capacity of the sample [20, 22].

A sample formed from several single crystals of strontium titanate was studied. These
crystals were grown by Verneuil process with a purity of 99 998%. The main impurities
were 3 ppm of Fe and 2 ppm of Ni. These crystals were of the same thickness (1 mm)
and had an overall surface face (110) of 25 mm2. The flatness of this face was better than
1 µm over the full sample. The face (110) was placed perpendicular to the directionX in
figure 1; thus the uniaxial stress was applied along the crystallographic [1 1 0] direction.

3. Results and discussion

With the sample under different uniaxial stresses (0, 2, 4 and 5 bar) the specific heat was
measured while decreasing the temperature at a constant rate of 0.06 K h−1 and increasing
the temperature at 0.07 K h−1 and 0.2 K h−1 for various runs. Data were obtained at
intervals of 0.02 K and 0.05 K. The increase of the temperature in the sample due to the
measurement process is estimated to be 0.06 K.

In figure 2, data obtained while cooling the sample are shown for various uniaxial
stresses. At 105.0 K the specific heat shows a stepwise behaviour. Its specific heat jump1c0

is estimated to be 0.003 J g−1 K−1 which is in reasonable agreement with the values obtained
by Garnier [16] and Franke and Hegenbarth [17]. Within the experimental resolution,1c0

remains constant for all applied stresses while the transition width increases with increasing
stress.

Data obtained while heating the sample show a similar behaviour to those shown in
figure 2, although, as we could expect, the transition appears to be marginally wider on
heating than on cooling.

In order to analyse our results further we follow the procedure for the determination of
the excess entropy commonly used for the investigation of ferroelastic phase transitions [4].
The excess entropy1S is calculated from

1S = −
∫ Tc

T

1c

T
dt (1)

where the excess heats have been determined with reference to a straight line adjusted for
T > 106 K for each stress. These straight lines are represented in figure 2. The resulting
excess entropies are shown in figure 3. We now correlate the excess entropy directly with
the structural order parameterQ using the underlying assumption of Landau theory, namely
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Figure 2. The specific heat of strontium titanite versus temperature (on cooling) for some
applied uniaxial stresses. For reasons of clarity data under stress have been shifted in the graph.

the quadraticQ-dependence of1S:

1S ∝ Q2 and 1S1/2β ∝ T − Tc (2)

whereβ is the critical exponent of the order parameter.
Using the data in figure 3, the exponentβ has been calculated for each stress in such a

way as to obtain the best linear relation between1S1/2β andT . These linear relations are
shown in figure 4. The values ofβ and the corresponding linear regression coefficient are
indicated for each stress in table 1.

We now turn to the discussion of the experimental observations on the stress-free crystal
which we use to test the underlying assumptions of equation (2). As a first result we find
the exponentβ to be 0.35± 0.02. This value is close to the Ising value and slightly below
the anticipated value for the 3D Heisenberg model. It is close to the earlier results of Müller
and Berlinger [1] and Steigmeier and Auderset [10]. This agreement is taken as justification
of the validity of assuming a simple quadratic scaling of the excess entropy with respect to
the order parameter. Estimating the relevance of the entropy tails nearTc, we proceed as
follows. The rotation angle atT/Tc = 0.96 is ϕ = 0.67◦ [8]. The excess entropy at the
same temperature is 7.76×10−5 J g−1 K−1 for the stress-free sample leading to the relation

1S = 1.73× 10−4ϕ2 (J g−1 K−1). (3)

We may now use this estimate to calibrate the weak tails of the excess entropy
at temperatures close to the transition point. The maximum amplitude of this tail is
2.3 × 10−6 J g−1 K−1. The equivalent rotation angle is 0.013◦. Such small rotation angles
may well be the signature of defects, surface heterogeneous stress fields, etc and may not
relate to intrinsic effects of the phase transition. We conclude, therefore, that the exponent
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Figure 3. The excess entropy versus temperature for the different applied uniaxial stresses
represented in figure 2.

β found in stress-free crystals is close to that found by other experimental methods and that
there is no compelling evidence for additional fluctuation effects at temperatures close to
the transition point.

Using the same scaling relation we now analyse the excess entropy of samples under
uniaxial stress in the crystallographic [1 1 0] direction. Ignoring the weak tails near the
transition points, all curves can be described empirically by power laws. The exponentsβ

clearly increase with increasing stress from 0.35 to 0.5 (table 1). Simultaneously we find
an increase of the transition temperature, which we define as the temperature at which the
power-law entropy disappears. This temperature is 104.88 K for the stress-free sample and
increases to 105.31 K for a load of 5 bar. The resulting stress dependence of the transition
temperature is much greater than for the cubic–trigonal transition when stress is applied
along the crystallographic [1 1 1] direction [8]. It also exceeds the slopes of theTc versusp
curves obtained by [26] for stresses much larger than those employed in our experiments.
At this point, our results on the dTc/dp slope may only be correct within some 20% and
further work is clearly needed to chart thep–T field with sufficient accuracy in order to
derive firm conclusions regarding the crossover behaviour for weak stresses in the [1 1 0]
direction.

Such work should focus on the question of whether the transition temperature depends
linearly on the external stress, as predicted by Landau theory for the uniform state, or,
alternatively, whether a non-linear regime exists for small stresses. Such non-linearities
were previously observed in ferroelastic materials for stress fields generated by defects.
The non-linear part of theTc versusp curve was called the plateau regime [4, 27] with
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Figure 4. The best linear relation between1S1/2β and temperature for the different applied
uniaxial stresses represented in figure 2.

a weaker (stronger)p-dependence in the (inverse) plateau atp = 0. The physical origin
of the (inverse) plateau lies in the heterogeneity of the sample in the presence of defects
or domain boundaries. In this context the results of Fossheim and Berre [26] are most
important. These authors found that external stress decreases the attenuation of ultrasonic-
wave propagation nearTc. The relevant stresses were of the order of some 100 bar, i.e. much
greater than in our experiments. Fossheim and Berre found no saturation of the reduction
of attenuation for pressures up to'500 bar, and correlated this effect with a continuous
decrease of the number of domain walls in the sample. This observation is at variance
with the behaviour of other improper ferroelastic materials in which the coercive stress is
much lower (e.g. 1 bar in Pb3(PO4)2 at '0.8 Tc; [4, 28]). Further work is clearly needed
to identify the characteristic coercive stress in SrTiO3 at temperatures closer toTc.

The main result of our investigation is that even small uniaxial stresses applied in
the crystallographic [1 1 0] direction lead, for extremely slow cooling rates, to mean-field
behaviour of the phase transition in SrTiO3. We also find that the excess entropy atT < Tc

increases with increasing uniaxial stress. It is now tempting to speculate that the increase
of 1S is directly correlated with an increase of the rotation angle in the unidomain state.
Experimental work designed to clarify this point is under way.
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[24] Jiménex J, Rojas E and Zamora M 1984J. Appl. Phys.56 3353
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